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1. Introduction 
Traditional analysis of charge retention in memory devices often relies on the Arrhenius 
equation, which assumes a single activation energy governs the thermally activated 
leakage. However, experimental studies reveal that in certain Charge-Trap (CT) Flash 
(based on SANOS, SONOS or TANOS stack process technology) devices, retention deviates 
significantly from this simple model. This white paper explains why the Arrhenius law fails 
in these cases and highlights the multiple physical processes that govern charge loss 
across a range of temperatures.  

 
Note: 
The following are different dielecric structures used for charge storage. 
SANOS: Silicon-Aluminum Oxide-Nitride-Oxide-Silicon structure uses Aluminum Oxide ((Al₂O₃) as the 
blocking layer. 
SONOS: Silicon-Oxide-Nitride-Oxide-Silicon structure uses Silicon Oxide (SiO₂) as the blocking layer. 
TANOS: Titanium-Aluminum Oxide-Nitride-Oxide-Silicon structure uses a Titanium gate and Aluminum 

Oxide  (Al₂O₃) as the blocking layer. 

 

2. Failure of Single-Activation Arrhenius Model 
Traditional model of charge retention time in memory devices often relies on the Arrhenius 
equation (below), which assumes the thermal emission as dominant charge loss 
mechanism:  
 
    τ = τ₀ · exp[−Ea / (kB (1/T − 1/T₀)) ] 

where: 
τ is the retention time 
Ea is the activation energy 
kB is Boltzmann's constant 
T is the absolute temperature 
T₀ is a reference temperature 

 
This predicts a straight line when plotting log(τ) versus 1/T. However, for devices such as 
CT-Flash (SANOS, SONOS, TANOS common stack processes), physical measures deviate 
from linearity, particularly when the flash cell Tunnel Oxide thickness is below 4 nm.  
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Some studies, indeed, based on accurate physical models, better clarify the reasons of 
this observed deviation by considering primary charge loss mechanisms, like the direct 
tunneling and the lateral transport.  In particular, it emerged that the retention curve in the 
Arrhenius diagram ( lot τ  vs  1/k_BT), simulated on thin (<4 nm) Tunnel Oxide processes, 
could have multiple regions and each of them can be fitted by a straight line, characterized 
by a specific activation energy, Ea. 
 
At low temperatures (Region 3 in Figure 1), the electrons transport, at the Tunnel_Oxide- 
Substrate interface, dominates over the lateral electrons transport and the Thermal 
emission but the behavior goes back to a pure Arrhenius one after the charge depletion of 
this region.   
 
At moderate temperatures (Region 2 in Figure 1), direct tunneling mechanism, which is 
temperature insensitive, dominates. Therefore, the retention curve slope (Ea dependent) 
decreases. 
 
At high temperatures (Region 1 in Figure 1), the thermal emission and lateral transport are 
prevalent with respect to the direct tunneling charge loss and that explains an Arrhenius-
like behavior. 
 
 

 

FIG. 1: Retention Time plot showing the traditional Arrhenius model and the simulated one, closer 
to the real phenomena, whose distinct slopes correspond to separate charge loss mechanisms. 
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3. Charge Loss Mechanisms 

3.1 Lateral Transport 

The Lateral Transport (white arrows in Figure 2) mechanism is mainly due to Poole-
Frenkel effect, which is a thermally exited emission of electrons, from traps holding 
them in the Charge Trap Layer. This kind of transport is obviously temperature 
dependent. 

 

FIG. 2: Cross-section of a 2D CT memory cell showing key retention loss mechanisms. 
 

3.2 Direct Tunneling 

The Direct Tunneling (grey arrow in Figure 2) mechanism is mainly due to charge Trap-
Assisted-Tunneling (TAT), which is the most famous tunneling mechanism. Since it 
does not require specific conditions, if traps are located in the Tunnel Oxide layer, then 
TAT takes place through the trap sites even at low electric field region. So, the electrons 
stored in Charge Trap layer can leak through the traps located in the Tunnel Oxide. This 
mechanism is temperature independent. 

 

3.3 Thermal Emission 

The major phenomenon contributing to the Thermal Emission (orange arrow in Figure 2) 
is the so-called Schottky Emission, which is a conduction mechanism taking place 
when electrons can get enough energy provided by thermal activation, so that they can 
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move to the Substrate by overcoming the energy barrier at the Charge Trap – Tunnel 
Oxide interface. 
 

4. Implications for Modeling and Testing 
Using a single activation energy extracted from high-temperature data would lead to 
erroneous predictions at normal operating temperatures. For example, fitting only the mid-
temperature slope may significantly underestimate charge loss at high temperatures. 
Accurate modeling requires either piecewise Arrhenius fits for each regime or 
comprehensive physical simulations that capture all relevant mechanisms. 

5. Conclusion 
The Arrhenius law with a single activation energy is insufficient for accurately modeling 
data retention in leading edge CT-Flash and TANOS (SANOS, SONOS) devices. Multiple 
charge loss mechanisms, each with its own temperature dependence, lead to non-linear 
behavior in Arrhenius plots. Recognizing and incorporating these mechanisms ensures 
reliable data retention time predictions on SSD and NVMe based on the latest CT 3D NAND 
flash technologies. 
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